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1. INTRODUCTION AND TERMINOLOGY 1

TOUGHNESS AND MATCHING EXTENSION IN GRAPHS

by

M.D. Plummer* DTIC
Department of Mathematics -LECTE

Vanderbilt University :,. UN 2 6 1986
Nashville, Tennessee 37235

1. Introduction and Terminology

All graphs in this paper will be finite and connected and will have
no loops or parallel lines.

Let n and p be positive integers with n < (p - 2)/2 and let G be
a graph with p points having a perfect matching. Graph G is said to
be n-extendable if every matching of size n in G extends to a perfect
matching.

The concept of n-extendability for bipartite graphs was studied by
Hetyei (1964). But the study of the more general family of n-extendable
graphs which axe not necessarily bipartite seems to have even earlier
roots. In the late 1950's, Kotzig (1959a, 1959b, 1960) began to develop
a decomposition theory for graphs with perfect matchings, but unfor-
tunately these papers did not receive the attention that they deserve,
due to the fact that they were written in Slovak. In the early 1960's, the
study of decompositions of graphs in terms of their maximum matchings
was begun by Gallai (1963, 1964) and independently by Edmonds (1965).
One of the degenerate cases of their theory for mazimum matchings,
however, arises when the graphs in question have perfect matchings.

Motivated by these results of Kotzig, Hetyei, Gallai and Edmonds,
i Lovasz (1972) extended and refined the canonical decompositions already

extant.
In this same paper, Lov~sz also introduced the concept of a bicriical

s] 3graph. A graph G is said to be bicritical if G - u - v has a perfect

natching for every pair of distinct points u and v in V(G). In the last
A, LLAen years or so, the earlier work on decompositions of graphs in terms-..

0 -f their matchings has evolved further (see Lovisz and Plummer (1986))

f bicritical graphs which are, in addition, 3-connected. Such graphs

work supported by ONR Contract # N00014-85-K-0488

""



r

have been christened bricks. (See, for example, the paper by Edmonds,
Lovbz and Pulleyblank (1982) and that of Lovess (1986).)

But what is the connection between n-extendability and bicriticality?
One of the results presented in Plummer (1980) states that every 2-
extendable graph is either bipartite or is a brick. (The reader should con-
vince himself immediately that these two classes of graphs are disjoint.)
Motivated by this result, the author has continued to study properties of
n-extendable graphs (see. (1985, 1986a, 1986b and 1986c)).

Let S be a point cutset in graph G and let c(G - S) denote the
number of components in G - S. Then, if G is not complete, the
toughness of G is defined to be min -S' where the minimum is takene(G-S)
over all point cutsets S of G, whereas we define the toughness of K,, to
be +oo for all n. We denote the toughness of G by tough(G). We
will also say that graph G is k-tough if tough(G) > k. This parameter
was introduced by Chv~tal (1973a, 1973b) who was initially motivated
by studies about Hamiltonian cycles in graphs. He noted, however, in
(1973a) that every 1-tough graph with an even number of points has a
perfect matching.

A generalization of both the concepts of Hamiltonian cycle and
perfect matching is the idea of a k-factor of a graph. A k-factor of
a graph G is a spanning subgraph of G which is regular of degree k.
Thus a perfect matching is just a 1-factor and a Hamiltonian cycle is
just a connected 2-factor. Chvita conjectured in (1973a) that if G is
any graph on p points and if k is a positive integer such that G is k-tough
and kp is even, then G has a k-factor. This conjecture has only recently
been settled in the affirmative by Enomoto, Jackson, Katerinis and A.
Saito (1985).

In the present paper, we wish to treat some relationships between
toughness of a graph and the n-extendability of the graph. In the next
section we will prove two results. The first says essentially that if a
graph has sufficiently high toughness (and has an even number of points)
then it must be n-extendable. The second result applies to graphs with -

toughness less than one and presents an upper bound on the value of n
for which such a graph can be n-extendable. i]

In the final section, we compare and contrast these results with the
n-factor results of Enomoto, Jackson, Katerinis and A. Saito.

Any graph terminology used, but not defined, in this paper may be
found either in Bondy and Murty (1977) or Lov~sz and Plummer (1986). ' --
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2. TWO RESULTS ON TOUGHNESS AND N-EXTENDABILITY 3

2. Two results on toughness and n-extendability

In addition to the theorem of the author (1980) mentioned in the
Introduction, there are two other results proved in that paper which we
shall use here and hence we begin by stating them without proof.

1980A. THEOREM. If n > 2 and G is ,-eztendable, then G is also
(n - 1)-eztendable.

1980B. THEOREM. If G is n-eztendable, then G is (n + 1)-con-

Sonected.

Our first result of the present paper follows in a straightforward way

via Tutte's classical theorem characterizing graphs with perfect match-
ings.

2.1. THEOREM. Suppose that G is a graph with p = IV(G)I points
with p even. Let n be a positive integer with p >_ 2n + 2. Then if
tough(G) > n, graph G is n-extendable. Moreover, this lower bound on
tough(G) is sharp for all n.

PROOF. First suppose that n = 1. Note that since tough(G) > 1,
graph G has a perfect matching by Tutte's Theorem on perfect match-
ings.

Now suppose that for some line e = xy E E(G), line e lies in no
perfect matching for G. Thus if G' = G-z--y, by the above-mentioned
theorem of Tutte there is aset S' C V(G') with IS'I < co(G'-S'). (Note
that here c0 (G'- S') denotes the number of components of G'- S' which
have an odd number of points.) But then by parity, IS'! < c(G'-S')-2.

Now let So = S'U {X, y}. Since G has a perfect matching, it follows
that c,(G- So) ISol = IS'I + 2 < co(G'- S'). But G- So -- G'- S'
and so equality holds throughout and in particular, c0(G - So) -So I.
(See Figure 1.)

But now

tough(G)= min IS < o1 < ISO I
scv() c(G- S) c(G- So) co(G- So)

contradicting the hypothesis of this theorem. So the desired conclu-
sion holds when n = 1.

Now suppose n > 2, and assume that G is not n-extendable. Let

M = {ei,...,e,} be a matching of size n which does not extend to
a perfect matching. Denote e1 = xjyj for i =-1, ... , n. Let G,
G - xi ... - Y.... Y. Hence G, has no perfect matching

- . . . . . . . . .



FIGURE 1.

and thus by Tutte's Theorem, there is a set S, C V(GI) such that

ISIl < c,(Gi - SI). Hence by parity, ISi 1 :5cO(GI - SI)- 2. (Note that
* S, might be empty.)

Now G2 =G - ,,- y, has a perfect matching since we have already
proved that G is I-extendable. Let S2 = SIU{xi,. .. , xn. 1, Ill,... I ,

and note that once again by Tutte's Theorem, c,0(G2 - S2) :5 IS21=
ISiI +2n-25 <c,(Gi -SI)+2n-4. But G 2 - 2 = G,-S, and so it
follows that co (G2 - S2 ) ! ISIl + 2.

Now let S3 =SU {1...., 1, , . ). Then, since G -S3=
G2- S2, we have

tough(G) < min ISI < IS31 I S31
s g v(G)c(G -S) -c(G- S3 ) c(G2 - 2 )

IS31 ISII+2n
O(2-SO) c,(G2 - 2)

_ I~I+2nnIS I + 2n
:5ISiI+2 :5 ISiI+2 n

again a contradiction of the hypothesis.
It remains only to exhibit extremal graphs for each value of n >

1. For each positive integer ni > 1, define graph H, as follows. Let
N ={,..,e}be a set of n independent lines. Join each of the 2n
points of N to each point of two disjoint copies of the complete graph
K, 1 (See Figure 2.) Then IV(H,,)I 6n + 2 and it is easy to see that

% %1
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2. TWO RESULTS ON TOUGHNESS AND N-EXTENDABILITY 5
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FIGURE 2. The extremal family {H,}9_ 0.,

tough(H,,) =n. However, the matching N does not extend to a perfect
matching.

Now let us begin to think of some type of converse to the above
* result. Let us remark at the outset that if a graph G is n-extendable,

there is no lower bound on'the toughness of G. To see this, we construct
the following family of graphs. Let ni and k be any two positive integers.
Let S be a set of 2n independent points and let graph J(n, k) be con-
structed by joining each point of set S to both endpoints of each of 2n+k
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FIGURE 3. The extremal family {J(n, k)}10 1,,_ I

independent lines. (See Figure 3.)
It is easy to verify that J(n, k) is n-extendable for every value of k.

Clearly, tough(J(n, k)) 2n/(2n + k), and hence tough(J(n, k)) -- 0 as
k --+ oo. Of course the number of points in graph J(n, k) is quite large
and it makes sense to amend our search for some type of converse to
Theorem 2.1 as follows. Again letting p = IV(G)I, we may ask if there is
a function f (p) such that if graph G is f (p)-extendable, then G is, say,
1-tough. The next result shows that the answer to this question is "yes".

2.2. THEOREM. Let .(G be a graph with p points and let n be a
positive integer. Suppose that G is n-eztendable, but that tough(G) < 1.
Then n < 12 j and this bound is sharp for each n.

PROOF. Since tough(G) < 1, there is a cutset S in G such that
G-S has more than 151 = s components. Note that by Theorem 1980B,
s > n + 1 > 2. Let the components of G - S be C,..., C.+,, where
r>1.

Note that G - S must have at least one even component, for if not,
by Tutte's Theorem, G could not have a perfect matching, contradicting
the hypothesis of the present theorem. So suppose that component C1 is
even and hence IV(CI) >2. Since n > 1, G is 2-connected by Theorem
1980B, and hence there exists a line el joininG a point of C, to a point of
S. By hypothesis, G is n-extendable and n> 1, so by Theorem 1980A,
G is 1-extendable. So extend line el to a perfect matching F, of G and
note that by parity, F matches at least two points of component C1

: ,. , ,_.- '.-. ',' '.'. .. .. . . .. . . .. . .* . . . . . . . .. , . . . .. .. .. ....*.% .'. ... _.......



2. TWO RESULTS ON TOUGHNESS AND N-EXTENDABILITY 7

into set S. It then follows that, in fact, G - S must have at least 3 even 4,

components.
Claim 1. G - S has at least n even components.
If 1 < n < 3, we are done. So we may suppose that n > 4. 6

Suppose, to the contrary, that G - S has t even components, where
3 < t < n - 1. Relabeling these components if necessary, suppose that
Ci,... ,Ct are the even components of G - S. (Recall that altogether,
G - S has a + r > s +1 n + 2 components.)

We now construct a matching which contains two lines joining each
of the components C1, ... , Ct to different points of S. Let el be any line
joining C to a point ul in S, relabeling the points of S if necessary.
Now if all lines between S and C2 are incident with point ul, it then
follows that ul is a cutpoint of G, a contradiction of the fact that G is
2-connected. Hence we can match points of C1 and C2 via lines el and
e2 to distinct points ul and U2 of S say, where once again we relable the
points of S if necessary.

Recall that n > 4. Suppose further that C,..., , q < n, have
been matched into S to points u1 ,..., Uq respectively. If we cannot
match a point of V(C,+,) into S at a point different from u1,...,uq,
then {u 1, U } is a cutset of G; that is, it separates Cq+1 from all the
other components of G - S. Hence x(G) _< q < n, contradicting the fact
that (by Theorem 1980B) graph G is (n + 1)-connected. Thus we have
the matching of size n that we seek. Call it MI.

Extend matching M, to a perfect matching F2 of G. By parity, for
each even component C, .... , Ct, matching F2 must match at least one
point to S other than that matched by MI. Without loss of generality,
let us suppose that a point of C, is matched to point u,,+,,..., and that
a point of Ct is matched to point uft+t. (See Figure 4.)

But now each of the odd components C +1 ,...,C',+, must contain
at least one point which is matched by perfect matching F2 into the set
{u,++t+,...,u} of S. Thus it follows that s + r - n < s - (n + t) and
so r < -t < 0, a contradiction and Claim 1 is proved.

Finally, we prove
Claim 2. Graph G - S has at least 2n + r even components.
By Claim 1, graph G-S has at least n even components. Relabeling

if necessary, suppose that they are C1 ,... ,C,,... ,C,+,. Just as in the
proof of Claim 1, since G is n-connected, we can find a matching M 2

which joins exactly one point of component Ci to a point u, in S for
i - 1,..., n, where yet again, we renumber points in S if necessary.

Since G is n-extendable, let us extend matching M2 to a perfect

, -1
* t,"..,' . % ".$'' .'--.L""S ' . .'-' ' a',. " " " " " " :' " ... "... "- " -, "," " " "" "-" "
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FIGURE 4.

matching F3 of G. By parity, each of C,... ,C,, has at least 2 points
matched into S by F3 . So relabeling again if need be, assume that F3

also matches a point u,,+i to a point in component C, for i ,. n
(In particular at this point, we now know that ISI = a ! 2n.)

Thus F3 must match the remaining s-2n points of S (if any) to some
s -2n points in U:1 V(C,). So among the components C,+,,. .. C. ,.
at least (s + r - n) - (s - 2n) = ni + r must be even. These components,
together with C1,... , C,, give the 2n + r even components of G - S as
claimed.

Now we have

IV(G)I =p= IS! + Iv(Cl)I + . + IV(C.+,,)I

>8s+2(2n +r) +( +r- (2n +r))

=s +4n +2r 4.- 2n = 28+ 2n +2r > 6n +2r > 6n +2.

So n < (p - 2)/r) and since n is an integer, nt < L6J
To show tha. the bound is sharp for all n > 1 consider the infinite

family of graphs L,~ where L,, = J(n, 1) and J(n, 1) is shown in Figure 3.
Note that p = IV(Hn)j = 2n + 2(2n +1) = 6n +2 and hence n ==(p -2)/6
and it is easy to check that graph 1H, is n'-extendable, but not (n + 1)-
extendable.

Of course, Theorem 2.2 can be restated as follows: if graph G is
*P 1

2 J) + I-extendable, then G is 1-tough.

~a ~ ~ . *. . . .. % .%.* *.* .=

. . . . . . . . . . . . . . . . . . .



3. COMPARISONS WITH AN N-FACTOR THEOREM 9 "

3. Comparisons with an n-factor theorem

Enomoto, Jackson, Katerinis and A. Saito (1985) have proved the
following result.

1985. THEOREM. Let G be a graph with at least n + 1 points and
suppose tough(G)> n. Then, if nIV(G) is even, G has an n-factor.

This theorem answers in the affirmative a conjecture of Chvtal. In
order to properly compare the conclusion of this result with that of our
Theorem 2.1, let us try to state each result in as parallel a fashion as
possible. Of course, if we were to define a graph to be "0-extendable"
if it had a perfect matching, the two conclusions would say exactly the
same thing when n = 1.

Now suppose n > 2 and consider the following two statements; the
first being the result of Theorem 1985 and the second, our Theorem 2.1.

(A) tough(G) > n =# G has an n-factor.

(B) tough(G) > n =i G is (n - 1)-extendable.

We claim that the two conclusions are independent, in that neither
implies the other.

First consider the family of graphs J(n, 1) already discussed above.
Suppose n > 2. We already know that graph J(n, 1) is n-extendable.
Hence by Theorem 1980A it is also (n - 1)-extendable. We claim it has
no n-factor.

Suppose, to the contrary, that J(n, 1) does have an n-factor, F.
Then factor F must send 2n 2 lines from set S to G- S. But each point
of G - S must send at least n - 1 lines to set S and hence we have at
least (n - 1)(4n + 2) = 4n2 - 2n - 2 lines of factor F from G - S to S.
But then 2n 2 > 4n 2 - 2n - 2 and it follows that n = 1, a contradiction.

Finally, consider the infinite family of graphs {M"},}°- 2 constructed
as follows. Graph Mn is formed by taking two copies of the complete
graph K,+1 and joining corresponding points of the two copies with
a perfect matching. (This is, of course, just the prism over K,+,.)
Graph M,, clearly has an n-factor consisting of precisely two components;
namely, the two copies of K,+i. On the other hand, we claim that
graph M,, is not (n - 1)-extendable. Let the points of the "top" K,+ 1
be ul,..., u,,+, and the corresponding points of the "bottom" K,,+, be
vi,. .. ,n,+. (That is, uivi, i = 1,...,n+ 1, is the perfect matching
joining the top and bottom.)

In order to prove our assertion, let us consider the cases for n odd
and even separately.
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FIGURE 5. Extremal graphs A 4 and M 5

First suppose n is odd. Select the matching Al. consisting of
UIVI, U2U,,, u3u,- 1,... together with line v,,v +,. Clearly M. is a match-
ing of size n - 1, but it cannot be extended to a perfect matching for
point U,+1 could never be matched in such a extension.

Now suppose n is even. First let us suppose also that n > 4. In
this case, select the matching M, to consist of Ulun, U2 un- 1,... together
with line ViVn+i. Then matching M, has size n - 1, but it cannot be
extended to a perfect matching since point un+1 could never be matched.

Finally, suppose n = 2. Let M 2 be the graph K 4 - e for any line e
in K 4 . Clearly M 2 is not 1-extendable, but it has a 2-factor.

We show the graphs M 4 and M5 in Figure 5.

%I-
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